

Efficient Swarm Neutralization in Complex Environments using MARL and Adaptive Navigation Strategies

Junior Samuel LOPEZ YEPEZ, PhD.

SET-315 Symposium on "Detection, Tracking, ID and
Defeat of Small UAVs in Complex Environments".
9 - 10 October 2023, Denmark.

www.thalesgroup.com

Decision-making components of autonomous collaborative swarms

THALES Building a future we can all trust THALES GROUP LIMITED DISTRIBUTION

REF xxxxxxxxxxx rev xxx – date Name of the company / Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Mission Phases to counter-act a intruder swarm

Arming and Take-off

Approaching

Tracking

Catching

Neutralization

Dropping and re-planning

Controlled by the operator

Mission is initiated by the operator. It waits until at least a target is detected to assign autonomously the defending elements to the target(s).

Deep MARL

The swarm starts defending autonomously as soon as a target is detected in the "buffer" zone. The goal is to intercept the target(s).

Deep MARL

Each agent of the swarm position itself to maintain the tracking of the target(s). An autonomous sensing control helps the visual tracking as well.

Rule-based

When a set of conditions are met, one selected UAV navigates with a catching strategy to a selected target.

Rule-based

The neutralization occurs when the position of the target and captor met. In our case, the neutralization payload used in simulations is a net.

Rule-based

The captured target is retrieved to a safe area. After, the drone can re-plan for tracking purposes.

THALES GROUP LIMITED DISTRIBUTION

REF xxxxxxxxx rev xxx - date Name of the company / Template: 87211168-DOC-GRP-EN-006 This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Target Assignation Algorithm

> Challenge: Assign N defending drones to M targets, where M <= N</p>

> Algorithm: Minimum collaborative distance

Conditions:

 $\sum_{j=1} x_{ij} = 1$

A target must be have at least on defending drone assigned to it

A defending drone must have only one target assigned

Limitations: **ON!**

٨	^	^	^	^	^		^	^	^	~ <i>/</i>	· ^	^	^	^	^	^	· ·	n n	•	^	^	~	^	~ .	^ ^	~ ^	^	^	^	^	• •		^	^	^	^	^ /	• •	^	^	^	۰ <i>،</i>	^	~	^	•	~ /		^	^	^	~ ^		^	^	^	^
^	^	^	^	^	^	~	^	^	~	^ /	· ^	^	~	^	^	^	^ <i>/</i>	~ ^	^	^	^	^	^	^	~ ^	· ^	^	^	^	^	^ ^	^	^	^	^	^	^ /	~ ^	^	^	^	^ <i>/</i>	^	^	^	^ (~ /	· ^	^	^	^	~ ~	~ ^	^	^	^	٨
^	۸	^	^	^	^	· ^	^	^	^	^ /	· ^	^	^	^	^	•	۸ <i>،</i>	~ ^		^	^	^	^	^	~ ^	· ^	^	۸	^	^	^ ^		^	^	^	^	^ /	~ ^	^	^	^	~ /	^	^	^	^ /	~ ^	· ·	^	٨	^	~ ^		^	^	^	۸
^	^	^	^	^	^		^	^	^	^ <i>/</i>	· ^	^	^	^	^	^	۰ <i>،</i>	~ ^	• •	^	^	٨	^	^	^ ^	~ ^	^	^	٨	^	• •	^	٨	^	^	^	^ /	^ ^	^	۸	^	۰ <i>،</i>	^	^	^	• (~ /	· ^	^	^	٨	~ ^		^	٨	^	٨
^	^	~	^	^	^	~	^	^	~	~ ~	· ^	^	~	^	^	^	• •	~ ^	• •	~	^	^	^	<u> </u>	~ ^	· ^	~	^	^	^	^ ^	· ^	^	^	^	~	^ /	~ ^	^	^	^	<u>،</u> ،	^	^	^	• •	~ /	· ^	л	^	^	~ ~	~ ~	^	^	^	٩
																																																									_

REF xxxxxxxxx rev xxx - date Name of the company / Template: 87211168-DOC-GRP-EN-006 This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Deep MARL for navigation

> Challenge: Collaborative swarm behaviour for navigation

- > Algorithm: Off-policy multi-agent Deep Reinforcement Learning
 - Off policy: To be sample efficient
 - Centralized training and decentralized execution: To be independent but collaborative
 - Reinforcement Learning: Best strategy is learnt

REF xxxxxxxxxxx rev xxx – date Name of the company / Template: 87211168-DOC-GRP-EN-006 This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Dynamic adaptive local fields for collision avoidance

> Challenge: Non-stationary position uncertainty on a 3D volume

THALES Building a future we can all trust

REF xxxxxxxxx rev xxx – date Name of the company / Template: 87211168-DOC-GRP-EN-006 This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES © 2023 THALES. All rights reserved.

Tracking (including sensing control) with collision avoidance

THALES GROUP LIMITED DISTRIBUTION

REF xxxxxxxxx rev xxx - date Name of the company / Template: 87211168-DOC-GRP-EN-006 This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Neutralizing an enemy swarm (5 vs 5)

THALES GROUP LIMITED DISTRIBUTION

REF xxxxxxxxxx rev xxx – date Name of the company / Template: 87211168-DOC-GRP-EN-006 This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Neutralizing an enemy: Close-up on payload control and replanning

THALES GROUP LIMITED DISTRIBUTION

REF xxxxxxxxxx rev xxx – date Name of the company / Template: 87211168-DOC-GRP-EN-006 This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Sensing control: Pan, tilt and zoom

> Challenge: Capture a target visually using autonomous sensing control on a moving defending drone with a EO camera

Note that the "buffer zone" is a volume of approximately 600m x 400m 70m, and the size of a drone is near 1m x 1m x 0.5m

THALES GROUP LIMITED DISTRIBUTION

REF xxxxxxxxxx rev xxx - date Name of the company / Template: 87211168-DOC-GRP-EN-006 This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Process slide

Conclusion

- A safe and performant set of interdependent algorithms for tracking and neutralizing a swarm of UAVs.
- Combination of Machine Learning and Rule-based algorithms through the notion of Mission Phases.
- Successfully tested on simulations and in real flight demonstrations

Limitations

- Weather conditions and actual dynamics for training
- Radar performance and uncertainty (situational awareness in general)
- Target assignation algorithm increases exponentially with a higher number of drones
- Generalization might be limited for some use cases

Future work

- Human-in-the-loop
- Better situational awareness
- Improve stability for visual tracking
- Enhance safety by decreasing the risk of collisions
- Increase the maturity of the solution in general

THALES GROUP LIMITED DISTRIBUTION

REF xxxxxxxxxxx rev xxx – date Name of the company / Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Questions?

Thales Digital Solutions, Canada

Artificial Intelligence Unit (CortAlx, Montreal)

Junior Samuel Lopez Yepez - Al Scientist

junior.lopez@thalesgroup.com